

Iridium Edge Satellite

APLICATIONS

- Fleet Management.
- Remote Monitoring.
- SCADA.
- Asset Tracking.
- Maritime.

KEY FEATURES

- Hardware-Ready Device for simple, low risk integration.
- Low-Cost Device for affordable customer adoption.
- Satellite Add-On for truly global coverage.
- Ready-To-Install for quick time-tomarket
- Robust Power Supply for industrial installations.
- Certified in key geographic markets.
- 180° Line of Sight for compromised, partially blocked locations.
- Iridium Short Burst DataSM (SBDSM) modem for Iridium's superior network advantages.

SP-Iridium Edge Rugged and reliable satellite

Iridium Edge is a satellite IoT communications device that can be rapidly deployed and complements terrestrial-based solutions to create worldwide connectivity.

Iridium provides global IoT/M2M coverage for the most remote and inaccessible areas of the world.

It features an all-in-one Short Burst Data(SBD) modem and antenna, with power supply.

The plug-and-play satellite IoT device can be easily paired with existing satellite and cellular solutions, without complicated integration or development requirements.

Iridium Edge is totally compatible with **the Smartyplanet web platform** so collected data can be easily analyzed.

July 2017

Iridium Edge Satellite

Technical features

MECHANICAL	
Dimensions	130x80x30 mm
Ingress Protection	IP67
Side and bottom cable exits	
Connector	M12-8 pin male, terminated on 20cm pigtail cable
Installation options	Pole, Screw, Tape

ENVIRONMENTAL	
Operating Temperature Range	-40 to +85°C
Storage Temperature Range	-40 to +85°C
Vibration	SAE J1455, Section 4.10

NETWORK	
Message size	270 bytes (receive) 340 bytes (transmit)
Frequency	1616- 1626.5 MHz
SBD Transceiver	Iridium 9602N
Antenna	Integrated Iridium certified antenna

CERTIFICATIONS
Iridium Satellite Network Certification
RoHS Compliant
FCC, IC, CE, Australia Approvals

POWER	
Power Supply	9-32V, SAE J1455 Load Dump Protected
Maximum Power	1,6W (Peak for Short Transmit Burst)
Low Power Modes	< 200uA
Polarity Protection	Reverse

INTERFACES RS232 AT Command Interface On / Off Control Lines

Plug and play Installation

The design of this Station allows his installation under the concept ' to plug and play '. He places of simple form on posts, walls or poles, and his entail with the web of visualization is immediate and automatic.

Without complicated infrastructures

With the different models of station it will be able to create networks of sensors adapted to the needs of his sector. without need of complicated infrastructures not costly.

Better relation Cost - benefit

The new concept of station of sensors allows to have the best technology to monitor and to control his resources to a cost very lower than other existing alternatives on the market.

Visualization in web page

The control of the sensors is realized by means of a web application personalized with multiple functionalities as alarms, historical, multiple users, etc.. Accessible from any device connected to Internet.

Sensors Networks

The number of Stations to linking to his network is unlimited, being able to incorporate different models and configurations to form extensive networks that connect the information of his resources to Internet, to give response to the Smart cities of the future

Multiple sensors

There are multiple the precision sensors that can join. The model of Station selects depending on the type and I number of sensors that he needs.